Developing a Model to Study the Climate Change Impact on River Bifurcations in Engineered Rivers

More Info
expand_more

Abstract

Climate change is responsible for global shifts in precipitation patterns and an overall in-crease in global temperatures. The transi-tions are anticipated to modify the river hydro-graph and sea level. The changes to the hy-drograph are also likely to influence sediment flux. These alterations imply shifts in both up-stream and downstream boundaries for river bifurcations. However, the resulting bifurca-tion response remains uncertain and warrants further investigation. Our objective is to un-derstand the extent of large-scale and long-term response of river bifurcations to climate change. We take the Upper Dutch Rhine bifur-cation region as our case study and develop a 1D hydro-morphodynamic model representing the system to achieve this goal.