Reaction-diffusion equations with transport noise and critical superlinear diffusion

Local well-posedness and positivity

More Info
expand_more

Abstract

In this paper we consider a class of stochastic reaction-diffusion equations. We provide local well-posedness, regularity, blow-up criteria and positivity of solutions. The key novelties of this work are related to the use transport noise, critical spaces and the proof of higher order regularity of solutions – even in case of non-smooth initial data. Crucial tools are Lp(Lq)-theory, maximal regularity estimates and sharp blow-up criteria. We view the results of this paper as a general toolbox for establishing global well-posedness for a large class of reaction-diffusion systems of practical interest, of which many are completely open. In our follow-up work [8], the results of this paper are applied in the specific cases of the Lotka-Volterra equations and the Brusselator model.