Context-based cyclist path prediction using Recurrent Neural Networks
E.A.I. Pool (TU Delft - Intelligent Vehicles)
J.F.P. Kooij (TU Delft - Intelligent Vehicles)
D. Gavrila (TU Delft - Intelligent Vehicles)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper proposes a Recurrent Neural Network (RNN) for cyclist path prediction to learn the effect of contextual cues on the behavior directly in an end- to-end approach, removing the need for any annotations. The proposed RNN incorporates three distinct contextual cues: one related to actions of the cyclist, one related to the location of the cyclist on the road, and one related to the interaction between the cyclist and the egovehicle. The RNN predicts a Gaussian distribution over the future position of the cyclist one second into the future with a higher accuracy, compared to a current state-of-the-art model that is based on dynamic mode annotations, where our model attains an average prediction error of 33 cm one second into the future.