A multi-task model for mill load parameter prediction using physical information and domain adaptation

Validation with laboratory ball mill

Journal Article (2025)
Author(s)

Yiwen Liu (Taiyuan University of Technology)

Gaowei Yan (Taiyuan University of Technology)

Shuyi Xiao (Taiyuan University of Technology)

Fang Wang (Taiyuan University of Technology)

Rong Li (Taiyuan University of Technology)

Y Pang (TU Delft - Transport Engineering and Logistics)

Research Group
Transport Engineering and Logistics
DOI related publication
https://doi.org/10.1016/j.mineng.2024.109148
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Transport Engineering and Logistics
Volume number
222
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Accurate prediction of mill load parameters is crucial to improving grinding efficiency and saving energy. Traditional prediction models have challenges such as poor interpretability, low prediction efficiency and differences in data distribution. This study innovatively proposed a multi-task prediction model that integrates physical information and domain adaptation. By constructing a physical-data-driven hybrid model, the physical relationship between mill load parameters is embedded into the model as prior knowledge to improve the prediction accuracy of the model. At the same time, multi-task learning is used to predict the material-to-ball volume ratio and the pulp density at the same time, which improves efficiency and reduces repetitive work. The domain adaptation method is introduced to ensure that the model maintains stable prediction performance when the data distribution changes. Laboratory ball mill data verification shows that the proposed model not only improves the prediction accuracy, but also adapts well to variable working conditions, showing significant superiority.

Files

1-s2.0-S0892687524005776-main.... (pdf)
(pdf | 3.9 Mb)
- Embargo expired in 13-06-2025
License info not available