Formal controller synthesis via genetic programming
Cees Ferdinand Verdier (TU Delft - Team Tamas Keviczky)
M. Mazo Espinosa (TU Delft - Team Tamas Keviczky)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents an automatic controller synthesis method for nonlinear systems with reachability and safety specifications. The proposed method consists of genetic programming in combination with an SMT solver, which are used to synthesize both a control Lyapunov function and the modes of a switched state feedback controller. The resulting controller consists of a set of analytic expressions and a switching law based on the control Lyapunov function, which together guarantee the imposed specifications. The effectiveness of the proposed approach is shown on a 2D pendulum.