Self-organizing topology for energy-efficient ad-hoc communication networks of mobile devices
Indushree Banerjee (TU Delft - System Engineering)
ME Warnier (TU Delft - Multi Actor Systems)
Frances M.T. Brazier (TU Delft - System Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
When physical communication network infrastructures fail, infrastructure-less communication networks such as mobile ad-hoc networks (MANET), can provide an alternative. This, however, requires MANETs to be adaptable to dynamic contexts characterized by the changing density and mobility of devices and availability of energy sources. To address this challenge, this paper proposes a decentralized context-adaptive topology control protocol. The protocol consists of three algorithms and uses preferential attachment based on the energy availability of devices to form a loop-free scale-free adaptive topology for an ad-hoc communication network. The proposed protocol has a number of advantages. First, it is adaptive to the environment, hence applicable in scenarios where the number of participating mobile devices and their availability of energy resources is always changing. Second, it is energy-efficient through changes in the topology. This means it can be flexibly combined with different routing protocols. Third, the protocol requires no changes on the hardware level. This means it can be implemented on all current phones, without any recalls or investments in hardware changes. The evaluation of the protocol in a simulated environment confirms the feasibility of creating and maintaining a self-adaptive ad-hoc communication network, consisting of multitudes of mobile devices for reliable communication in a dynamic context.