Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices

Journal Article (2021)
Author(s)

Rens Liebrand (Maritime Research Institute Netherlands (MARIN), Student TU Delft)

Maarten Klapwijk (Maritime Research Institute Netherlands (MARIN), TU Delft - Ship Hydromechanics and Structures)

Thomas Lloyd (Maritime Research Institute Netherlands (MARIN))

Guilherme Vaz (WavEC Offshore Renewables)

Research Group
Ship Hydromechanics and Structures
DOI related publication
https://doi.org/10.1115/1.4048133
More Info
expand_more
Publication Year
2021
Language
English
Research Group
Ship Hydromechanics and Structures
Issue number
1
Volume number
143

Abstract

This study evaluates the influence of transition and turbulence modeling on the prediction of wetted and cavitating tip vortices for an elliptical wing, while investigating the numerical errors. Transition modeling increases the quality of numerical predictions since the assumption of a fully turbulent boundary layer, commonly found in literature, contributes to underprediction of the tip vortex cavity size. By applying the local correlation-based transition model (LCTM) and controlling the boundary layer thickness using different turbulent inflow conditions, the pressure in the vortex was found to reduce by 20% for an Angle of Attack (AoA) of 5 deg. The consequent increase in cavity size was found to be of a similar order of magnitude. At 9 deg AoA, transition always occurs just downstream of the leading edge, making this AoA more suitable to investigate the effect of different turbulence modeling approaches. Azimuthal and axial velocity fields are validated against stereographic-particle image velocimetry (S-PIV) measurements. The time-averaged velocity profiles predicted by delayed detached-eddy simulation (DDES) and improved delayed detached-eddy simulation (IDDES) are close to the experiments; however, no velocity fluctuations and vortex dynamics are observed around the vortex. A comparison of wetted and cavitating simulations shows that the cavity leads to a change in the balance between production and destruction of turbulence kinetic energy, which reduces the turbulent diffusion in and around the cavity compared to wetted flow conditions. Consequently, the vapor flow exhibits the characteristics of a potential flow. Whether this is physically plausible remains to be investigated.

No files available

Metadata only record. There are no files for this record.