Effect of Nb on Microstructural Evolution and Mechanical Properties of Hot-Rolled Quenching and Partitioning Steels Containing Bainite
Zhisong Chai (Northeastern University China)
Jun Hu (Northeastern University China)
Chenchong Wang (Northeastern University China)
Lingyu Wang (Northeastern University China)
Weihua Sun (Shandong Iron & Steel Group Rizhao, Shandong)
Sybrand van der Zwaag (Novel Aerospace Materials)
W Xu (Northeastern University China)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Herein, the effect of Nb content on the phase transformation kinetics, microstructure, and mechanical properties of hot-rolled quenching and partitioning (Q&P) steel is investigated. The characteristics of three C–Mn–Si–Ti steels (0.18C, 2.0Si, 2.6Mn, and 0.015Ti) containing 0, 0.027, or 0.061 wt% Nb are compared. Results reveal that grain boundary pinning by precipitates and Nb solute drag effects refine the austenite grain size during the hot-rolling process; the microstructural refinement is carried over to the final microstructure subjected to the Q&P treatment. The remaining supersaturated Nb suppresses the bainite formation and decreases the final bainite fraction formed in the Q&P process. The microstructural evolution leads to an increase in the ultimate tensile strength (UTS) of the steel containing 0.027 wt% Nb from 1169 to 1228 MPa, while keeping the total elongation at 18%. When the Nb content is increased to 0.061 wt%, the UTS of the steel increases to 1313 MPa, but the elongation at break drops to 16%. The effect is due to the carbon consumption by the Nb precipitates, which causes a decrease in the stability of the retained austenite and reduces the strain hardening at high strain levels.