Scaling of drag forces on accelerating plates
J. Reijtenbagh (TU Delft - Fluid Mechanics)
M.J. Tummers (TU Delft - Fluid Mechanics)
J. Westerweel (TU Delft - Fluid Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Predicting unsteady loads on plate-like objects during unsteady motion is important in many applications, such as ship manoeuvring, flight and biological propulsion. The drag force on a starting plate that moves normal to its surface can be severely underestimated during the acceleration phase when conventional methods are used to incorporate the effects of acceleration. These methods often introduce an inviscid added mass force that has its origin in potential flow. However, the flow field around a starting plate quickly diverges from potential flow after the start of the motion due to the continuous creation of vorticity at the plate surface. Following the concept of drag by Burgers (1921 Proc. K. Ned. Akad. Wet. 23, 774–782), we propose a model to predict the creation of vorticity on the plate surface and its advection into the vortex loop at the plate edges, based on Stokes’ first problem. This model shows that the acceleration drag force is a history force, in contrast to the inviscid added mass force that is proportional to the instantaneous acceleration of the plate. We perform experiments on starting plates over a large range of accelerations, velocities, fluid viscosities and plate geometries for which the model gives accurate predictions for the drag force during acceleration and during the relaxation phase immediately after the acceleration ceases. This model is extended to also predict the drag forces on accelerating plates during a starting motion with a non-constant acceleration.