On the Effect of the Amorphous Silicon Microstructure on the Grain Size of Solid Phase Crystallized Polycrystalline Silicon

Journal Article (2011)
Author(s)

K Sharma (External organisation)

A Branca (External organisation)

Andrea Illiberi (External organisation)

F. Tichelaar (QN/High Resolution Electron Microscopy)

M Creatore (External organisation)

MCM van de Sanden (External organisation)

QN/High Resolution Electron Microscopy
More Info
expand_more
Publication Year
2011
Language
English
QN/High Resolution Electron Microscopy
Issue number
3
Volume number
1
Pages (from-to)
401-406

Abstract

In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values R* (which represents the distribution of SiH(x) bonds in amorphous silicon), at constant hydrogen content. Amorphous silicon films undergo a phase transformation during solid-phase crystallization and the process results in fully (poly-)crystallized films. An increase in amorphous film structural disorder (i.e., an increase in R*), leads to the development of larger grain sizes (in the range of 700-1100 nm). When the microstructure parameter is reduced, the grain size ranges between 100 and 450 nm. These results point to the microstructure parameter having a key role in controlling the grain size of the polycrystalline silicon films and thus the performance of polycrystalline silicon solar cells.

No files available

Metadata only record. There are no files for this record.