Robust tube-based model predictive control with Koopman operators
Xinglong Zhang (National University of Defense Technology)
Wei Pan (TU Delft - Robot Dynamics)
Riccardo Scattolini (Politecnico di Milano)
Shuyou Yu (Jilin University)
Xin Xu (National University of Defense Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Koopman operators are of infinite dimension and capture the characteristics of nonlinear dynamics in a lifted global linear manner. The finite data-driven approximation of Koopman operators results in a class of linear predictors, useful for formulating linear model predictive control (MPC) of nonlinear dynamical systems with reduced computational complexity. However, the robustness of the closed-loop Koopman MPC under modeling approximation errors and possible exogenous disturbances is still a crucial issue to be resolved. Aiming at the above problem, this paper presents a robust tube-based MPC solution with Koopman operators, i.e., r-KMPC, for nonlinear discrete-time dynamical systems with additive disturbances. The proposed controller is composed of a nominal MPC using a lifted Koopman model and an off-line nonlinear feedback policy. The proposed approach does not assume the convergence of the approximated Koopman operator, which allows using a Koopman model with a limited order for controller design. Fundamental properties, e.g., stabilizability, observability, of the Koopman model are derived under standard assumptions with which, the closed-loop robustness and nominal point-wise convergence are proven. Simulated examples are illustrated to verify the effectiveness of the proposed approach.