Optimizing Experimental Parameters for the Projection Requirement in HAADF-STEM Tomography

Journal Article (2017)
Author(s)

Richard Aveyard (TU Delft - ImPhys/Quantitative Imaging)

Z. Zhong (Centrum Wiskunde & Informatica (CWI))

KJ Batenburg (Centrum Wiskunde & Informatica (CWI))

B Rieger (TU Delft - ImPhys/Quantitative Imaging)

Research Group
ImPhys/Quantitative Imaging
Copyright
© 2017 R.A. Aveyard, Z. Zhong, KJ Batenburg, B. Rieger
DOI related publication
https://doi.org/10.1016/j.ultramic.2017.03.009
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 R.A. Aveyard, Z. Zhong, KJ Batenburg, B. Rieger
Research Group
ImPhys/Quantitative Imaging
Bibliographical Note
Accepted Author Manuscript@en
Volume number
177
Pages (from-to)
84-90
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Tomographic reconstruction algorithms offer a means by which a tilt-series of transmission images can be combined to yield a three dimensional model of the specimen. Conventional reconstruction algorithms assume that the measured signal is a linear projection of some property, typically the density, of the material. Here we report the use of multislice simulations to investigate the extent to which this assumption is met in HAADF-STEM imaging. The use of simulations allows for a systematic survey of a range of materials and microscope parameters to inform optimal experimental design. Using this approach it is demonstrated that the imaging of amorphous materials is in good agreement with the projection assumption in most cases. Images of crystalline specimens taken along zone-axes are found to be poorly suited for conventional linear reconstruction algorithms due to channelling effects which produce enhanced intensities compared with off-axis images, and poor compliance with the projection requirement. Off-axis images are found to be suitable for reconstruction, though they do not strictly meet the linearity requirement in most cases. It is demonstrated that microscope parameters can be selected to yield improved compliance with the projection requirement.

Files

Optimizing_Experimental_Parame... (pdf)
(pdf | 1.26 Mb)
- Embargo expired in 07-03-2019