Optimizing the valorization of industrial by-products for the induction healing of asphalt mixtures

Journal Article (2019)
Author(s)

Marta Vila-Cortavitarte (University of Cantabria)

Daniel Jato-Espino (University of Cantabria)

Amir Tabakovic (Trinity College Dublin, University College Dublin, TU Delft - Materials and Environment)

Daniel Castro-Fresno (University of Cantabria)

Research Group
Materials and Environment
Copyright
© 2019 Marta Vila-Cortavitarte, Daniel Jato-Espino, A. Tabakovic, Daniel Castro-Fresno
DOI related publication
https://doi.org/10.1016/j.conbuildmat.2019.116715
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 Marta Vila-Cortavitarte, Daniel Jato-Espino, A. Tabakovic, Daniel Castro-Fresno
Research Group
Materials and Environment
Bibliographical Note
Accepted Author Manuscript@en
Volume number
228
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Self-healing within asphalt pavements is the process whereby road cracks can be repaired automatically when thermal and mechanical conditions are met. To accelerate and improve this healing process, metal particles are added to asphalt mixtures. However, this approach is costly both in economic and environmental terms due to the use of virgin metallic particles. So, even though the self-healing of asphalt mixtures has been widely addressed in experimental terms over the years, there is a lack of research aimed at modelling this phenomenon, especially with the purpose of optimizing the use of metal particles through the valorization of industrial by-products. As such, the goal of this study was to develop a statistical methodology to model the healing capacity of asphalt concrete mixtures (AC-16) from the characteristics of the metal particles added and the time and intensity used for magnetic induction. Five metal particles were used as heating inductors, including four types of industrial by-products aimed at transforming waste products into material for use in the road sector. The proposed approach consisted of a combination of cluster algorithms, multiple regression analysis and response optimization, which were applied to model laboratory data obtained after testing asphalt concrete mixtures containing these inductors. The results proved the accuracy of the statistical methods used to reproduce the experimental behaviour of the asphalt mixtures, which enabled the authors to determine the optimal amount of industrial by-products and time needed to make the self-healing process as efficient as possible.

Files

CBM2019_Final_draft.pdf
(pdf | 1.13 Mb)
- Embargo expired in 22-08-2021