The Quarrel of Local Post-hoc Explainers for Moral Values Classification in Natural Language Processing
Andrea Agiollo (TU Delft - Interactive Intelligence, Alma Mater Studiorum – Universitá di Bologna)
L. Cavalcante Siebert (TU Delft - Interactive Intelligence)
Pradeep Kumar Murukannaiah (TU Delft - Interactive Intelligence)
Andrea Omicini (Alma Mater Studiorum – Universitá di Bologna)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Although popular and effective, large language models (LLM) are characterised by a performance vs. transparency trade-off that hinders their applicability to sensitive scenarios. This is the main reason behind many approaches focusing on local post-hoc explanations recently proposed by the XAI community. However, to the best of our knowledge, a thorough comparison among available explainability techniques is currently missing, mainly for the lack of a general metric to measure their benefits. We compare state-of-the-art local post-hoc explanation mechanisms for models trained over moral value classification tasks based on a measure of correlation. By relying on a novel framework for comparing global impact scores, our experiments show how most local post-hoc explainers are loosely correlated, and highlight huge discrepancies in their results—their “quarrel” about explanations. Finally, we compare the impact scores distribution obtained from each local post-hoc explainer with human-made dictionaries, and point out that there is no correlation between explanation outputs and the concepts humans consider as salient.