Estimation of electrical conductivity models using multi-coil rigid-boom electromagnetic induction measurements

Journal Article (2024)
Author(s)

M.E. Carrizo (TU Delft - Applied Geophysics and Petrophysics)

Dieter Werthmüller (TU Delft - Applied Geophysics and Petrophysics)

Evert Slob (TU Delft - Applied Geophysics and Petrophysics)

Research Group
Applied Geophysics and Petrophysics
DOI related publication
https://doi.org/10.1016/j.cageo.2024.105732
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Applied Geophysics and Petrophysics
Volume number
193
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Electromagnetic induction measurements from multi-coil configuration instruments are used to obtain information about the electrical conductivity distribution in the subsurface. The resulting inverse problem might not have a unique and stable solution. In that case, a local inversion method can be trapped in a local minimum and lead to an incorrect solution. In this study, we evaluate the well-posedness of the inverse problem for two and three-layered electrical conductivity models. We show that for a two-layered model, uniqueness is ensured only when both in-phase and quadrature data are available from the measurements. Results from a Gauss–Newton inversion and a lookup table demonstrate that the solution space is convex. Furthermore, we demonstrate that for even a simple three-layered model, the data contained in such measurements are insufficient to reach a correct or stable solution. For models with more than 2 layers, independent prior information is necessary to solve the inverse problem. The insights from the numerical examples are applied in a field case.