Lorenz-generated bivariate archimedean copulas
Andrea Fontanari (TU Delft - Numerical Analysis)
Pasquale Cirillo (University of Nicosia, M Open Forecasting Center)
CW Oosterlee (TU Delft - Numerical Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A novel generating mechanism for non-strict bivariate Archimedean copulas via the Lorenz curve of a non-negative random variable is proposed. Lorenz curves have been extensively studied in economics and statistics to characterize wealth inequality and tail risk. In this paper, these curves are seen as integral transforms generating increasing convex functions in the unit square. Many of the properties of these "Lorenz copulas", from tail dependence and stochastic ordering, to their Kendall distribution function and the size of the singular part, depend on simple features of the random variable associated to the generating Lorenz curve. For instance, by selecting random variables with a lower bound at zero it is possible to create copulas with asymptotic upper tail dependence.An"alchemy" of Lorenz curves that can be used as general framework to build multiparametric families of copulas is also discussed.