The discovery, disappearance and re-emergence of radiation-stimulated superconductivity

Journal Article (2020)
Author(s)

Teun Klapwijk (Moscow State University of Education, Kavli institute of nanoscience Delft, University of Würzburg, TU Delft - QN/Klapwijk Lab)

Pieter J. De Visser (SRON–Netherlands Institute for Space Research)

Research Group
QN/Klapwijk Lab
Copyright
© 2020 T.M. Klapwijk, P.J. de Visser
DOI related publication
https://doi.org/10.1016/j.aop.2020.168104
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 T.M. Klapwijk, P.J. de Visser
Research Group
QN/Klapwijk Lab
Volume number
417
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We trace the historical fate of experiment and theory of microwave-stimulated superconductivity as originally reported for constriction-type superconducting weak links. It is shown that the observed effect disappeared by improving weak links to obtain the desired Josephson properties. Separate experiments were carried out to evaluate the validity of the proposed theory of Eliash'berg for energy-gap-enhancement in superconducting films in a microwave field, without reaching a full quantitatively reliable measurement of the stimulated energy gap in a microwave field, but convincing enough to understand the earlier deviations from the Josephson-effect. Over the same time period microwave-stimulated superconductivity continued to be present in superconductor-normal metal-superconductor Josephson weak links. This experimental body of work was left unexplained for several decades and could only be understood properly after the microscopic theory of the proximity-effect had matured enough, including its non-equilibrium aspects. It implies that the increase in critical current in weak-link Josephson-junctions is due to an enhancement of the phase-coherence rather than to an enhancement of the energy-gap as proposed by Eliash'berg. The complex interplay between proximity-effect and the occupation of states continues to be, in a variety of ways, at the core of the ongoing research on hybrid Josephson-junctions. The subject of radiation-enhanced superconductivity has re-emerged in the study of the power-dependence of superconducting microwave resonators, but also in the light-induced emergence of superconductivity in complex materials.

Files

Eliashberg90_v2_arXiv.pdf
(pdf | 4.34 Mb)
- Embargo expired in 19-02-2022
License info not available