Advecting Superspecies
Efficiently Modeling Transport of Organic Aerosol With a Mass-Conserving Dimensionality Reduction Method
Patrick Obin Sturm (Student TU Delft, University of California)
Astrid Manders (DIANA FEA )
Ruud Janssen (DIANA FEA )
A Segers (DIANA FEA )
Anthony S. Wexler (University of California)
Haixiang Lin (TU Delft - Mathematical Physics, Universiteit Leiden)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The chemical transport model LOTOS-EUROS uses a volatility basis set (VBS) approach to represent the formation of secondary organic aerosol (SOA) in the atmosphere. Inclusion of the VBS approximately doubles the dimensionality of LOTOS-EUROS and slows computation of the advection operator by a factor of two. This complexity limits SOA representation in operational forecasts. We develop a mass-conserving dimensionality reduction method based on matrix factorization to find latent patterns in the VBS tracers that correspond to a smaller set of superspecies. Tracers are reversibly compressed to superspecies before transport, and the superspecies are subsequently decompressed to tracers for process-based SOA modeling. This physically interpretable data-driven method conserves the total concentration and phase of the tracers throughout the process. The superspecies approach is implemented in LOTOS-EUROS and found to accelerate the advection operator by a factor of 1.5–1.8. Concentrations remain numerically stable over model simulation times of 2 weeks, including simulations at higher spatial resolutions than the data-driven models were trained on. The reversible compression of VBS tracers enables detailed, process-based SOA representation in LOTOS-EUROS operational forecasts in a computationally efficient manner. Beyond this case study, the physically consistent data-driven approach developed in this work enforces conservation laws that are essential to other Earth system modeling applications, and generalizes to other processes where computational benefit can be gained from a two-way mapping between detailed process variables and their representation in a reduced-dimensional space.