AS

A Segers

29 records found

Authored

Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on both the environment and public health. However, predicting such ozone exceedances remains challenging due to the infrequent occurrence of high-concentration ozone ...

Advecting Superspecies

Efficiently Modeling Transport of Organic Aerosol With a Mass-Conserving Dimensionality Reduction Method

The chemical transport model LOTOS-EUROS uses a volatility basis set (VBS) approach to represent the formation of secondary organic aerosol (SOA) in the atmosphere. Inclusion of the VBS approximately doubles the dimensionality of LOTOS-EUROS and slows computation of the advect ...

Chemical transport models (CTM) are crucial for simulating the distribution of air pollutants, such as particulate matter, and evaluating their impact on the environment and human health. However, these models rely heavily on accurate emission inventory and meteorological inputs, ...

Super dust storms re-occurred over East Asia in 2021 spring and casted great health damages and property losses. It is essential to achieve an accurate dust forecast to reduce the damage for early warning. The forecasting system fundamentally relies on a numerical model which ...

This work proposes a robust and non-Gaussian version of the shrinkage-based knowledge-aided EnKF implementation called Ensemble Time Local H Filter Knowledge-Aided (EnTLHF-KA). The EnTLHF-KA requires a target covariance matrix to integrate previously obtained informat ...

Last spring, super dust storms reappeared in East Asia after being absent for one and a half decades. The event caused enormous losses in both Mongolia and China. Accurate simulation of such super sandstorms is valuable for the quantification of health damage, aviation risks, ...

In this paper, we propose an efficient and practical implementation of the ensemble Kalman filter via shrinkage covariance matrix estimation. Our filter implementation combines information brought by an ensemble of model realizations, and that based on our prior knowledge abou ...

When calibrating simulations of dust clouds, both the intensity and the position are important. Intensity errors arise mainly from uncertain emission and sedimentation strengths, while position errors are attributed either to imperfect emission timing or to uncertainties in the t ...

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-co ...

In this work, we present the development of a 4D-Ensemble-Variational (4DEnVar) data assimilation technique to estimate NOx top-down emissions using the regional chemical transport model LOTOS-EUROS with the NO2 observations from the TROPOspheric Monitoring Instrument (TROPOMI). ...

Tropospheric ozone is a secondary pollutant which can affect human health and plant growth. In this paper, we investigated transferred convolutional neural network long short-term memory (TL-CNN-LSTM) model to predict ozone concentration. Hourly CNN-LSTM model is used to extra ...

Air quality warning and forecasting systems are usually based on numerical chemical transport models (CTMs). Those dynamic models perform predictions by simulating the life cycles of the atmospheric components, including emission, transport and removal. However, the accuracy o ...

Emission inversion using data assimilation fundamentally relies on having the correct assumptions about the emission background error covariance. A perfect covariance accounts for the uncertainty based on prior knowledge and is able to explain differences between model simulat ...

A data assimilation system for the LOTOS-EUROS chemical transport model has been implemented to improve the simulation and forecast of PM10 and PM2.5 in a densely populated urban valley of the tropical Andes. The Aburrá Valley in Colombia was used as a case study, given data avai ...

Aerosol optical depths (AODs) from the new Himawari-8 satellite instrument have been assimilated in a dust simulation model over East Asia. This advanced geostationary instrument is capable of monitoring the East Asian ...

In previous studies, a number of model-based dust forecasts and early warning systems have been developed for the prevention of environmental impacts due to dusts. However, the accuracy of the model is limited by imperfect identification of dust emissions, in particular by the ...

In this study, we investigate a strategy to accelerate the data assimilation (DA) algorithm. Based on evaluations of the computational time, the analysis step of the assimilation turns out to be the most expensive part. After a study of the characteristics of the ensemble ash sta ...
Remote sensing, as a powerful tool for monitoring atmospheric phenomena, has been playing an increasingly important role in inverse modeling. Remote sensing instruments measure quantities that often combine several state variables as one. This creates very strong correlations bet ...
In this paper, we reconstruct the vertical profile of volcanic ash emissions by assimilating satellite data and ground-based observations using a modified trajectory-based 4D-Var (Trj4DVar) approach. In our previous work, we found that the lack of vertical resolution in satellite ...

Contributed

To regulate pollution emission of $\text{NO}_2$ and greenhouse gasses like carbon dioxide and methane, satellite images of the TROPOspheric Monitoring Instrument (TROPOMI) are used to map the spread of air pollution. This instrument delivers near-daily 'snapshots' of the $\text{N ...