NAD+-Dependent Enzymatic Route for the Epimerization of Hydroxysteroids

More Info
expand_more

Abstract

Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α-OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β-OH). With a view to developing robust and active biocatalysts, novel NADH-active 7β-HSDH species are necessary to enable a solely NAD+-dependent redox-neutral cascade for UDCA production. A wild-type NADH-dependent 7β-HSDH from Lactobacillus spicheri (Ls7β-HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD+-dependent 7β-HSDH enzyme in combination with 7α-HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD+, resulting in high yields (>90 %) of UCA and UDCA.

Files

Cssc.201801862.pdf
(pdf | 1.58 Mb)

Download not available