Authored

19 records found

Nature helps

Toward bioinspired bactericidal nanopatterns

Development of synthetic bactericidal surfaces is a drug-free route to the prevention of implant-associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating st ...

Directed evolution

Selecting today's biocatalysts

Directed evolution has become a full-grown tool in molecular biology nowadays. The methods that are involved in creating a mutant library are extensive and can be divided into several categories according to their basic ideas. Furthermore, both screening and selection can be used ...
Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of ...
BACKGROUND: Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nit ...
Rhodococcus strains are ubiquitous in nature and known to metabolise a wide variety of compounds. At the same time, asymmetric reduction of C=C bonds is important in the production of high-valued chiral building blocks. In order to evaluate if Rhodococci can be used for this task ...
Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for ...
β-Lactam acylases are crucial for the synthesis of semisynthetic cephalosporins and penicillins. Unfortunately, there are no cephalosporin acylases known that can efficiently hydrolyse the amino-adipic side chain of Cephalosporin C. In a previous directed evolution experiment, re ...
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several ...
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively b ...
We report a new format for measuring ATP/[32P]pyrophosphate exchange in a higher throughput assay of adenylation domains (A-domains) of non-ribosomal peptide synthetases. These enzymes are key specificity determinants in the assembly line biosynthesis of non-ribosomal peptides, a ...
α-Hydroxy ketones and vicinal diols constitute well-known building blocks in organic synthesis. Here we describe one enzyme that enables the enantioselective synthesis of both building blocks starting from diketones. The enzyme 2,3-butanediol dehydrogenase (BudC) from S. marcesce ...
Using directed evolution, we have selected an adipyl acylase enzyme that can be used for a one-step bioconversion of adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) to 7-ADCA, an important compound for the synthesis of semisynthetic cephalosporins. The starting point ...

Contributed

1 records found

Due to competition of host and bacterial cells to adhere and grow on implant surfaces, implants are frequently associated with a high risk of peri-implant infections. The microorganisms that are abundantly present during peri-implant infections are Staphylococcus bacteria and a v ...