Natural extensions for Nakada's α-expansions
Descending from 1 to g2
Jaap De Jonge (Universiteit van Amsterdam, TU Delft - Applied Probability)
Cor Kraaikamp (TU Delft - Applied Probability)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
By means of singularisations and insertions in Nakada's α-expansions, which involves the removal of partial quotients 1 while introducing partial quotients with a minus sign, the natural extension of Nakada's continued fraction map Tα is given for (10-2)/3≤α<1. From our construction it follows that Ωα, the domain of the natural extension of Tα, is metrically isomorphic to Ωg for α∈[g2,g), where g is the small golden mean. Finally, although Ωα proves to be very intricate and unmanageable for α∈[g2,(10-2)/3), the α-Legendre constant L(α) on this interval is explicitly given.