Unbiased Gradient Estimation for Differentiable Surface Splatting via Poisson Sampling
Jan Müller (Universität Bonn)
M. Weinmann (TU Delft - Computer Graphics and Visualisation)
Reinhard Klein (Universität Bonn)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We propose an efficient and GPU-accelerated sampling framework which enables unbiased gradient approximation for differentiable point cloud rendering based on surface splatting. Our framework models the contribution of a point to the rendered image as a probability distribution. We derive an unbiased approximative gradient for the rendering function within this model. To efficiently evaluate the proposed sample estimate, we introduce a tree-based data-structure which employs multipole methods to draw samples in near linear time. Our gradient estimator allows us to avoid regularization required by previous methods, leading to a more faithful shape recovery from images. Furthermore, we validate that these improvements are applicable to real-world applications by refining the camera poses and point cloud obtained from a real-time SLAM system. Finally, employing our framework in a neural rendering setting optimizes both the point cloud and network parameters, highlighting the framework’s ability to enhance data driven approaches.