Two-stage stochastic sizing of a rural micro-grid based on stochastic load generation

More Info
expand_more

Abstract

Robust sizing of rural micro-grids is hindered by uncertainty associated with the expected load demand and its potential evolution over time. This study couples a stochastic load generation model with a two-stage stochastic micro-grid sizing model to take into account multiple probabilistic load scenarios within a single optimisation problem. As a result, the stochastic-optimal sizing of the system ensures an increased robustness to shocks in the expected load compared to a best-case (lowest-demand) sizing, though with a lower cost and better dispatch flexibility compared to a worst-case (highest-demand) sizing. What is more, allowing just a 1% unmet demand enables to significantly improve the cost-competitiveness and the renewables penetration as all the not supplied energy is located in a negligible fraction of the unlikeliest highest demand scenarios.