Preventing Soft Errors and Hardware Trojans in RISC-V Cores

Conference Paper (2022)
Authors

Edian B. Annink (University of Twente)

Gerard Rauwerda (Recore Systems B.V.)

Edwin Hakkennes (Recore Systems B.V.)

A. Menicucci (Space Systems Egineering)

Stefano Mascio (Space Systems Egineering, European Space Agency (ESA))

Gianluca Furano (European Space Agency (ESA))

Marco Ottavi (University of Twente, University of Rome Tor Vergata)

Affiliation
Space Systems Egineering
Copyright
© 2022 Edian B. Annink, Gerard Rauwerda, Edwin Hakkennes, A. Menicucci, S. Di Mascio, Gianluca Furano, Marco Ottavi
To reference this document use:
https://doi.org/10.1109/DFT56152.2022.9962340
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Edian B. Annink, Gerard Rauwerda, Edwin Hakkennes, A. Menicucci, S. Di Mascio, Gianluca Furano, Marco Ottavi
Affiliation
Space Systems Egineering
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
ISBN (electronic)
9781665459389
DOI:
https://doi.org/10.1109/DFT56152.2022.9962340
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Soft errors in embedded systems' memories like single-event upsets and multiple-bit upsets lead to data and instruction corruption. Therefore, devices deployed in harsh environments, such as space, use fault-tolerant processors or redundancy methods to ensure critical application dependability. Another rising concern in secure, critical space applications is the possible introduction of hardware Trojans in an untrusted phase of the manufacturing process. Besides environmental side-effects, an adversary that has injected a malicious mechanism e.g., in the processor or memory can trigger unwanted behavior or leak sensitive information. Techniques to prevent or mitigate hardware Trojans are important to ensure hardware security. Leveraging the openness of the RISC-V ISA, this paper introduces a novel solution to improve the security and dependability of softcores with a low area and latency overhead. The instruction validator which is the first part of this solution can effectively detect hardware Trojans and multiple-bit upsets in the instruction memory by checking instruction/address pairs using a Bloom filter probabilistic data structure. The second part of the solution is the proposal of an error correction code instruction memory using Hamming single-error correction to detect and correct single-event upsets. It has also been proven that the Hamming decoder improves the detection performance of the instruction validator.

Files

Preventing_Soft_Errors_and_Har... (pdf)
(pdf | 0 Mb)
- Embargo expired in 01-07-2023
License info not available