Adaptive ensemble optimization for memory-related hyperparameters in retraining DNN at edge
Yidong Xu (Beijing Institute of Technology)
Rui Han (Beijing Institute of Technology)
Xiaojiang Zuo (Beijing Institute of Technology)
Junyan Ouyang (Beijing Institute of Technology)
Chi Harold Liu (Beijing Institute of Technology)
Y. Chen (TU Delft - Data-Intensive Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed m-hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods show promising results for static DNNs, little is known about how to online and opportunistically optimize all their m-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose, MPOptimizer, which jointly optimizes an ensemble of m-hyperparameters according to the input distribution and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution of retraining tasks under different m-hyperparameters and thus effectively estimate their influence on task performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model accuracies.