Elastodynamic single-sided homogeneous Green’s function representation: Theory and numerical examples

Journal Article (2019)
Author(s)

Christian Reinicke (TU Delft - Applied Geophysics and Petrophysics)

Kees Wapenaar (ImPhys/Acoustical Wavefield Imaging , TU Delft - Applied Geophysics and Petrophysics)

Research Group
Applied Geophysics and Petrophysics
Copyright
© 2019 C. Reinicke Urruticoechea, C.P.A. Wapenaar
DOI related publication
https://doi.org/10.1016/j.wavemoti.2019.04.001
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 C. Reinicke Urruticoechea, C.P.A. Wapenaar
Research Group
Applied Geophysics and Petrophysics
Bibliographical Note
Accepted Author Manuscript@en
Volume number
89
Pages (from-to)
245-264
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The homogeneous Green’s function is the difference between an impulse response and its time-reversal. According to existing representation theorems, the homogeneous Green’s function associated with source–receiver pairs inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many applications such as seismic imaging, time-lapse monitoring, medical imaging, non-destructive testing, etc., media are only accessible from one side. A recent development of wave theory has provided a representation of the homogeneous Green’s function in an elastic medium in terms of wavefield recordings at a single (open) boundary. Despite its single-sidedness, the elastodynamic homogeneous Green’s function representation accounts for all orders of scattering inside the medium. We present the theory of the elastodynamic single-sided homogeneous Green’s function representation and illustrate it with numerical examples for 2D laterally-invariant media. For propagating waves, the resulting homogeneous Green’s functions match the exact ones within numerical precision, demonstrating the accuracy of the theory. In addition, we analyse the accuracy of the single-sided representation of the homogeneous Green’s function for evanescent wave tunnelling.

Files

ManuscriptAcceptedRepo.pdf
(pdf | 0 Mb)
- Embargo expired in 17-04-2021