Assessing Oscillatory Stability with Dominant Grid-Forming Power Systems for Active Power Imbalances

Journal Article (2025)
Author(s)

S.S. Skogen (TU Delft - Intelligent Electrical Power Grids)

José Luis Rueda Torres (TU Delft - Intelligent Electrical Power Grids)

Research Group
Intelligent Electrical Power Grids
DOI related publication
https://doi.org/10.1109/OAJPE.2025.3571108
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Intelligent Electrical Power Grids
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

As the integration of renewable energy accelerates, ensuring power system stability becomes increasingly critical. This research utilized a Root Mean Square (RMS) synthetic model of the future 380 kV Dutch power system towards 2050 to analyze its oscillatory stability under high renewable penetration and the impact of grid-forming converters under various parametrizations. The presented case study shows that grid-forming (GFM) converters significantly improve frequency stability and damping performance across different perturbations, particularly at higher GFM penetration levels, improving frequency and damping parameters. However, various oscillatory modes present potential stability risks at high penetration levels. The case study also shows minimal differences in controller selection in large-scale models, except under certain conditions. Additionally, the analysis of controller parameters highlighted the critical importance of tuning active power parameters to ensure system stability. The investigation provides essential insights for future power systems, where large-scale integration of renewable energy will necessitate the implementation of converters able to provide ancillary services. The findings emphasize the importance of optimizing GFM converter settings and penetration levels to maintain system resilience, offering valuable guidance for future system planning and regulatory frameworks.

Files

Assessing_Oscillatory_Stabilit... (pdf)
(pdf | 2.55 Mb)
- Embargo expired in 29-09-2025
License info not available