Numerical analysis on the SIF of internal surface cracks in steel pipes reinforced with CRS subjected to bending
Z. Li (TU Delft - Transport Engineering and Logistics, TU Delft - Support Marine and Transport Techology)
X. Jiang (TU Delft - Transport Engineering and Logistics)
J.J. Hopman (TU Delft - Marine and Transport Technology, TU Delft - Ship Design, Production and Operations)
                                 More Info
                                
                                     expand_more
                                
                            
                            
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, Composite Repair System (CRS) is applied to repair the circumferential internal surface cracked steel pipes subjected to bending. The Stress Intensity Factor (SIF) is quantitatively analysed by means of numerical simulations, and the crack growth rate is predicted by using the Paris’ law. First, the three-dimensional finite element (FE) model is developed, and its reliability of evaluating SIF of internal surface crack in CRS reinforced pipe is validated. Then based on the FE method and combined with Paris’ law, a case study is deployed to predict the internal surface crack growth in steel pipes reinforced with CRS. The results show that CRS have significantly reduced the SIF of the internal surface crack and decrease the crack growth rate, while unchanging the variation trend of the crack aspect ratio. Afterwards, a parametric study is performed in order to guide the optimisation design of CRS reinforcement.