Upper and lower bounds for the optimal constant in the extended Sobolev inequality. Derivation and numerical results
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We prove and give numerical results for two lower bounds and eleven upper bounds to the optimal constant k0 = k0(n,α) in the inequality ∥u∥2n/(n-2α) ≤ k0 ∥∇u∥α2 ∥u∥1-α 2, u ∈ H1(ℝn), for n = 1, 0 < α ≤ 1/2, and n ≥ 2, 0 < α < 1. This constant k0 is the reciprocal of the infimum λn,α for u ∈ H1(ℝn) of the functional Λn,α = ∥∇u∥α2 ∥u∥1-α 2/∥u∥2n/(n-2α), u ∈ H1(ℝn), where for n = 1, 0 < α ≤ 1/2, and for n ≥ 2, 0 < α < 1. The lowest point in the point spectrum of the Schrödinger operator τ = -Δ+q on ℝn with the real-valued potential q can be expressed in λn,α for all q _ = max(0,-q) ∈ Lp(ℝn), for n = 1, 1 ≤ p < ∞, and n ≥ 2, n/2 < p < ∞, and the norm ∥q _ ∥p.