Lifted frequency-domain identification of closed-loop multirate systems

Applied to dual-stage actuator hard disk drives

Journal Article (2025)
Author(s)

Max van Haren (Eindhoven University of Technology)

Masahiro Mae (University of Tokyo)

L. Blanken (Sioux, Eindhoven University of Technology)

Tom Oomen (Eindhoven University of Technology, TU Delft - Team Jan-Willem van Wingerden)

Research Group
Team Jan-Willem van Wingerden
DOI related publication
https://doi.org/10.1016/j.mechatronics.2025.103311
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Team Jan-Willem van Wingerden
Volume number
108
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Frequency-domain representations are crucial for the design and performance evaluation of controllers in multirate systems, specifically to address intersample performance. The aim of this paper is to develop an effective frequency-domain system identification technique for closed-loop multirate systems using solely slow-rate output measurements. By indirect identification of multivariable time-invariant representations through lifting, in combination with local modeling techniques, the multirate system is effectively identified. The developed method is capable of accurate identification of closed-loop multirate systems within a single identification experiment, using fast-rate excitation and inputs, and slow-rate outputs. Finally, the developed framework is validated using a benchmark problem consisting of a multivariable dual-stage actuator from a hard disk drive, demonstrating its applicability and accuracy.