Optimal Commutation for Switched Reluctance Motors using Gaussian Process Regression
Max van Meer (Eindhoven University of Technology)
G. Witvoet (TNO, Eindhoven University of Technology)
T.A.E. Oomen (TU Delft - Team Jan-Willem van Wingerden, Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Switched reluctance motors are appealing because they are inexpensive in both construction and maintenance. The aim of this paper is to develop a commutation function that linearizes the nonlinear motor dynamics in such a way that the torque ripple is reduced. To this end, a convex optimization problem is posed that directly penalizes torque ripple in between samples, as well as power consumption, and Gaussian Process regression is used to obtain a continuous commutation function. The resulting function is fundamentally different from conventional commutation functions, and closed-loop simulations show significant reduction of the error. The results offer a new perspective on suitable commutation functions for accurate control of reluctance motors.