Characterization of a multi-pinhole molecular breast tomosynthesis scanner

More Info
expand_more

Abstract

In recent years, breast imaging using radiolabelled molecules has attracted significant interest. Our group has proposed a multi-pinhole molecular breast tomosynthesis (MP-MBT) scanner to obtain 3D functional molecular breast images at high resolutions. After conducting extensive optimisation studies using simulations, we here present a first prototype of MP-MBT and evaluate its performance using physical phantoms. The MP-MBT design is based on two opposing gamma cameras that can image a lightly compressed pendant breast. Each gamma camera consists of a 250 × 150 mm2 detector equipped with a collimator with multiple pinholes focusing on a line. The NaI(Tl) gamma detector is a customised design with 3.5 mm intrinsic spatial resolution and high spatial linearity near the edges due to a novel light-guide geometry and the use of square PMTs. A volume-of-interest is scanned by translating the collimator and gamma detector together in a sequence that optimises count yield from the scan region. Derenzo phantom images showed that the system can reach 3.5 mm resolution for a clinically realistic 99mTc activity concentration in an 11-minute scan, while in breast phantoms the smallest spheres visible were 6 mm in diameter for the same scan time. To conclude, the experimental results of the novel MP-MBT scanner showed that the setup had sub-centimetre breast tumour detection capability which might facilitate 3D molecular breast cancer imaging in the future.