Online Edge Flow Prediction Over Expanding Simplicial Complexes

Conference Paper (2023)
Author(s)

Maosheng Yang (TU Delft - Multimedia Computing)

Bishwadeep Das (TU Delft - Multimedia Computing)

E. Isufi (TU Delft - Multimedia Computing)

Multimedia Computing
Copyright
© 2023 M. Yang, B. Das, E. Isufi
DOI related publication
https://doi.org/10.1109/ICASSP49357.2023.10096364
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 M. Yang, B. Das, E. Isufi
Multimedia Computing
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
ISBN (print)
978-1-7281-6328-4
ISBN (electronic)
978-1-7281-6327-7
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Simplicial convolutional filters can process signals defined over levels of a simplicial complex such as nodes, edges, triangles, and so on with applications in e.g., flow prediction in transportation or financial networks. However, the underlying topology expands over time in a way that new edges and triangles form. For example, in a transportation network, a new connection between two locations is newly built, or in a currency exchange market, two currencies can be exchanged without an intermediate currency that can be understood as a new edge between them. To handle the streaming nature of data, we propose an online prediction for edge flows which generalizes to other higher-order simplicial signals. This is achieved by updating the filter coefficients via an online gradient descent with a provable sub-linear regret relative to the simplicial filter optimized over the whole sequence of edge flows. The update of the filter coefficients associated with the lower and upper Hodge Laplacians can be uncoupled in general. We test the online edge flow prediction on an expanding synthetic simplicial complex and a coauthorship complex showing a close performance to the offline counterpart.

Files

Online_Edge_Flow_Prediction_Ov... (pdf)
(pdf | 1.11 Mb)
- Embargo expired in 05-11-2023
License info not available