MY
M. Yang
15 records found
1
Learning on Simplicial Complexes
From Convolutions to Generative Models
Machine learning has been growing beyond data living on Euclidean spaces (e.g., texts, audios, images). Graph machine learning models, e.g., graph neural networks (GNNs), succeed in learning from graph-structured data using the graph topological information. In this thesis, we fo
...
Neural networks on simplicial complexes (SCs) can learn representations from data residing on simplices such as nodes, edges, triangles, etc. However, existing works often overlook the Hodge theorem that decomposes simplicial data into three orthogonal characteristic subspaces, s
...
The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson algorithm. However, iterative approximation involves a matrix i
...
We propose principled Gaussian processes (GPs) for modeling functions defined over the edge set of a simplicial 2-complex, a structure similar to a graph in which edges may form triangular faces. This approach is intended for learning flow-type data on networks where edge flows c
...
Simplicial convolutional filters can process signals defined over levels of a simplicial complex such as nodes, edges, triangles, and so on with applications in e.g., flow prediction in transportation or financial networks. However, the underlying topology expands over time in a
...
ICML 2023 Topological Deep Learning Challenge
Design and Results
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from t
...
We study linear filters for processing signals supported on abstract topological spaces modeled as simplicial complexes, which may be interpreted as generalizations of graphs that account for nodes, edges, triangular faces, etc. To process such signals, we develop simplicial conv
...
Reconstructing simplicial signals, e.g., signals defined on nodes, edges, triangles, etc., of a network, from (partial) noisy observation is of interest in water/traffic flow estimation or currency exchange markets. Typically, this concerns solving a regularised problem w.r.t. th
...
Graphs can model networked data by representing them as nodes and their pairwise relationships as edges. Recently, signal processing and neural networks have been extended to process and learn from data on graphs, with achievements in tasks like graph signal reconstruction, graph
...
This paper proposes convolutional filtering for data whose structure can be modeled by a simplicial complex (SC). SCs are mathematical tools that not only capture pairwise relationships as graphs but account also for higher-order network structures. These filters are built by fol
...
In this paper, we study linear filters to process signals defined on simplicial complexes, i.e., signals defined on nodes, edges, triangles, etc. of a simplicial complex, thereby generalizing filtering operations for graph signals. We propose a finite impulse response filter base
...
A critical task in graph signal processing is to estimate the true signal from noisy observations over a subset of nodes, also known as the reconstruction problem. In this paper, we propose a node-adaptive regularization for graph signal reconstruction, which surmounts the conven
...
To deal with high-dimensional data, graph filters have shown their power in both graph signal processing and data science. However, graph filters process signals exploiting only pairwise interactions between the nodes, and they are not able to exploit more complicated topological
...
While regularization on graphs has been successful for signal reconstruction, strategies for controlling the bias-variance trade-off of such methods have not been completely explored. In this work, we put forth a node varying regularizer for graph signal reconstruction and develo
...