A Capacitively Degenerated 100-dB Linear 20-150 MS/s Dynamic Amplifier
Shakil Akter (Broadcom Netherlands B.V.)
K.A.A. Makinwa (TU Delft - Microelectronics)
K. Bult (TU Delft - Electronic Instrumentation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a new dynamic residue amplifier topology for pipelined analog-to-digital converters. With an input signal of 100 mVpp,diff and 4 × gain, it achieves-100-dB total harmonic distortion, the lowest ever reported for a dynamic amplifier. Compared to the state of the art, it exhibits 25 dB better linearity with twice the output swing and similar noise performance. The key to this performance is a new linearization technique based on capacitive degeneration, which exploits the exponential voltage-to-current relationship of MOSFET in weak inversion. The prototype amplifier is fabricated in a 28-nm CMOS process and dissipates only 87 μW at a clock speed of 43 MS/s, thereby improving the energy per cycle by 26 × compared with that of state-of-the-art high-linearity amplifiers.