Enhancing Data-Driven Stochastic Control via Bundled Interval MDP

More Info
expand_more
Publication Year
2024
Language
English
Research Group
Team Manuel Mazo Jr
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
8
Pages (from-to)
2069-2074
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.

Files

Enhancing_Data-Driven_Stochast... (pdf)
(pdf | 1.65 Mb)
- Embargo expired in 20-12-2024
License info not available