Power consumption optimization of a wireless temperature sensor node using unidirectional communication
R. Taherkhani (TU Delft - Electronic Instrumentation)
Stoyan Nihtianova (TU Delft - Electronic Instrumentation)
More Info
expand_more
Abstract
Wireless sensor networks (WSNs) are gaining increasing popularity in industry. Success of these systems depends on two very important factors: power efficiency of the sensor nodes and communication reliability. In this paper, we investigate the effect of using unidirectional (broadcasting) communication on the power consumption and reliability of a wireless sensor node. A high-precision wireless temperature sensor reported in an earlier publication is employed as a case study. First, we calculate the energy required to transmit and receive a message using Bluetooth low energy (BLE) in the physical layer without taking any reliability precautions. Then, we estimate the amount of energy required for the reliable transmission of a BLE packet using the BLE acknowledgment method and forward error correction (FEC) in the application layer. Through this paper, we show that the power consumption of a wireless temperature sensor can be reduced using broadcast communication and simultaneous forward error correction while providing enough reliability in short ranges.
No files available
Metadata only record. There are no files for this record.