A Machine Learning-based framework and open-source software for Non Intrusive Water Monitoring
Marie-Philine Gross (Einstein Center Digital Future, Technical University of Berlin)
Riccardo Taormina (TU Delft - Sanitary Engineering)
Andrea Cominola (Einstein Center Digital Future, Technical University of Berlin)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Recent research highlights the potential of consumption-based feedback for water conservation, emphasizing the need for Non Intrusive Water Monitoring (NIWM). However, existing NIWM studies often rely on small datasets, a pre-selected class of models, and inaccessible software. Here, we introduce PyNIWM, a machine learning-based open-source Python framework for NIWM. PyNIWM enables water end-use classification via (i) data characterization and feature engineering, (ii) water end-use event classification with four machine learning classifiers, and (iii) performance assessment. We demonstrate PyNIWM on a real-world dataset containing around 800,000 labeled end-use events from 762 homes across the USA and Canada. The four PyNIWM classifiers achieve F1 scores above 0.85, indicating high suitability for water end-use classification. However, a tradeoff between accuracy and computational cost exists. Finally, data balancing through oversampling enhances classification of low-represented end-use classes, but does not improve overall classification. We release PyNIWM as an open-source software, aiming for collaborative and reproducible research.