Stability Analysis for Incremental Nonlinear Dynamic Inversion Control
Xuerui Wang (TU Delft - Control & Simulation)
Erik-jan van Kampen (TU Delft - Control & Simulation)
Q. Ping Chu (TU Delft - Control & Simulation)
P Lu (École Polytechnique Fédérale de Lausanne)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
As a sensor-based control approach, the Incremental Nonlinear Dynamic Inversion (INDI) method has been successfully applied on various aerospace systems and shown desirable robust performance to aerodynamic model uncertainties. However, its previous derivations based on the so-called time scale separation principle is not mathematically rigorous. There also
lack of stability and robustness analysis for INDI. Therefore, this paper reformulated the INDI control law without using the time scale separation principle and generalized it to not necessarily relative-degree-one problems, with consideration of the internal dynamics. Besides, the stability of the closed-loop system in the presence of external disturbances is analyzed using
Lyapunov methods and nonlinear system perturbation theory. Moreover, the robustness of the closed-loop system against regular and singular perturbations is analyzed. Finally, the reformulated INDI control law and main conclusions are verified by a rigid aircraft gust load alleviation problem.