Interaction between plasma synthetic jet and subsonic turbulent boundary layer

Journal Article (2017)
Author(s)

H. Zong (TU Delft - Aerodynamics)

Marios Marios (TU Delft - Aerodynamics)

Research Group
Aerodynamics
Copyright
© 2017 H. Zong, M. Kotsonis
DOI related publication
https://doi.org/10.1063/1.4979527
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 H. Zong, M. Kotsonis
Research Group
Aerodynamics
Issue number
4
Volume number
29
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400.Alarge-volume (1696mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flowin the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.

Files

Interaction_between_Plasma_Syn... (pdf)
(pdf | 6.78 Mb)
- Embargo expired in 01-05-2018
License info not available