Efficient and robust Schur complement approximations in the augmented Lagrangian preconditioner for the incompressible laminar flows
Xin He (Institute of Computing Technology Chinese Academy of Sciences)
C. Vuik (TU Delft - Numerical Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper introduces three new Schur complement approximations for the augmented Lagrangian preconditioner. The incompressible Navier-Stokes equations discretized by a stabilized finite element method are utilized to evaluate these new approximations of the Schur complement. A wide range of numerical experiments in the laminar context determines the most efficient Schur complement approximation and investigates the effect of the Reynolds number, mesh anisotropy and refinement on the optimal choice. Furthermore, the advantage over the traditional Schur complement approximation is exhibited.