Predictor-Based Tensor Regression (PBTR) for LPV subspace identification
B. Gunes (TU Delft - Team Jan-Willem van Wingerden)
Jan Willem Van van Wingerden (TU Delft - Team Jan-Willem van Wingerden)
Michel Verhaegen (TU Delft - Team Raf Van de Plas)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The major bottleneck in state-of-the-art Linear Parameter Varying (LPV) subspace methods is the curse-of-dimensionality during the first regression step. In this paper, the origin of the curse-of-dimensionality is pinpointed and subsequently a novel method is proposed which does not suffer from this bottleneck. The problem is related to the LPV sub-Markov parameters. These have inherent structure and are dependent on each other. But state-of-the-art LPV subspace methods parametrize the LPV sub-Markov parameters independently. This means the inherent structure is not preserved in the parametrization. In turn this leads to a superfluous parametrization with the curse-of-dimensionality. The solution lies in using parametrizations which preserve the inherent structure sufficiently to avoid the curse-of-dimensionality. In this paper a novel method based on tensor regression is proposed. This novel method is named the Predictor-Based Tensor Regression method (PBTR). This method preserves the inherent structure sufficiently to avoid the curse-of-dimensionality. Simulation results show that PBTR has superior performance with respect to both state-of-the-art LPV subspace techniques and also non-convex techniques.