Data-driven distributionally robust timetabling and dynamic-capacity allocation for automated bus systems with modular vehicles

Journal Article (2023)
Author(s)

Dongyang Xia (Beijing Jiaotong University)

Jihui Ma (Beijing Jiaotong University)

S. Sharif Azadeh (TU Delft - Transport and Planning)

Wenyi Zhang (Beijing Jiaotong University)

Transport and Planning
Copyright
© 2023 D. Xia, Jihui Ma, S. Sharif Azadeh, Wenyi Zhang
DOI related publication
https://doi.org/10.1016/j.trc.2023.104314
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 D. Xia, Jihui Ma, S. Sharif Azadeh, Wenyi Zhang
Transport and Planning
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Volume number
155
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The collaborative design of the timetable and dynamic-capacity allocation plan of emerging modular vehicles (MVs) is a promising solution to the mismatch between supply and demand in public transportation studies; however, such efforts are subject to high-level dynamics and uncertainty inherent in operating environments. In this study, we focus on the timetabling and dynamic-capacity allocation problem of MVs within the context of distributionally robust optimization under time-dependent demand uncertainty. The dynamic capacity refers to the number of modular units (MUs) comprising an MV can be potentially changed at different times and stops. A Wasserstein distance-based ambiguity set with a time-dependent and station-wise perturbation parameter is adopted to incorporate all potential distributions within a 1-Wasserstein distance for addressing the uncertainty of passenger demand. Further, a data-driven distributionally robust optimization model that considers time-varying capacity is formulated to minimize passenger waiting costs and dispatching costs of operators over all possible demand distributions within the ambiguity set. Subsequently, an expansion that allows for flexible formations of MVs assigned to each trip at each stop is proposed, and this results in more customized operational plans driven by the passenger demand. To improve the computational efficiency of realistic problems, we design a customized integer L-shaped method to exactly solve the models, which incorporates a class of valid equalities to further speed up the computation. The effectiveness of the proposed approaches in reducing the costs for both passengers and operators compared with the practical fixed-capacity operations is verified by real-world case studies based on the operating data of Beijing Bus Line 468. Furthermore, the superiority of the distributionally robust optimization method in comparison to the stochastic programming and the robust optimization approaches is demonstrated.

Files

1_s2.0_S0968090X23003030_main.... (pdf)
(pdf | 4.32 Mb)
- Embargo expired in 01-03-2024
Unspecified