Characterization and stabilization of the downward continuation problem for airborne gravity data
X. Li (National Oceanic and Atmospheric Administration)
J Huang (Natural Resources Canada)
R Klees (TU Delft - Physical and Space Geodesy)
R Forsberg (Technical University of Denmark (DTU))
M. Willberg (Technische Universität München)
D. Cornelis Slobbe (TU Delft - Physical and Space Geodesy)
C. Hwang (National Yang Ming Chiao Tung University, Hsinchu)
R. Pail (Technische Universität München)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this study, we compare six commonly used methods for the downward continuation of airborne gravity data. We consider exact and noisy simulated data on grids and along flight trajectories and real data from the GRAV-D airborne campaign. We use simulated and real surface gravity data for validation. The methods comprise spherical harmonic analysis, least-squares collocation, residual least-squares collocation, least-squares radial basis functions, the inverse Poisson method and Moritz’s analytical downward continuation method. We show that all the methods perform similar in terms of surface gravity values. For real data, the downward continued airborne gravity values are used to compute a geoid model using a Stokes-integral-based approach. The quality of the computed geoid model is validated using high-quality GSVS17 GPS-levelling data. We show that the geoid model quality is similar for all the methods. However, the least-squares collocation approach appears to be more flexible and easier to use than the other methods provided that the optimal covariance function is found. We recommend it for the downward continuation of GRAV-D data, and other methods for second check.