High-dynamic baseline determination for the Swarm constellation
X. Mao (TU Delft - Astrodynamics & Space Missions)
PNAM Visser (TU Delft - Astrodynamics & Space Missions)
Jose van den van den IJssel (TU Delft - Astrodynamics & Space Missions)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Baseline determination for the European Space Agency Swarm magnetic field mission is investigated. Swarm consists of three identical satellites -A, -B and -C. The Swarm-A and -C form a pendulum formation whose baseline length varies between about 30 and 180 km. Swarm-B flies in a higher orbit, causing its orbital plane to slowly rotate with respect to those of Swarm-A and -C. This special geometry results in short periods when the Swarm-B satellite is adjacent to the other Swarm satellites. Ten 24-hr periods around such close encounters have been selected, with baseline lengths varying between 50 and 3500 km. All Swarm satellites carry high-quality, dual-frequency and identical Global Positioning System receivers not only allowing precise orbit determination of the single Swarm satellites, but also allowing a rigorous assessment of the capability of precise baseline determination between the three satellites. These baselines include the high-dynamic baselines between Swarm-B and the other two Swarm satellites. For all orbit determinations, use was made of an Iterative Extended Kalman Filter approach, which could run in single-, dual-, and triple-satellite mode. Results showed that resolving the issue of half-cycle carrier phase ambiguities (present in original release of GPS RINEX data) and reducing the code observation noise by the German Space Operations Center converter improved the consistency of reduced-dynamic and kinematic baseline solutions for both the Swarm-A/C pendulum pair and other combinations of Swarm satellites. All modes led to comparable consistencies between the computed orbit solutions and satellite laser ranging observations at a level of 2 cm. In addition, the consistencies with single-satellite ambiguity fixed orbit solutions by the German Space Operations Center are at comparable levels for all the modes, with reduced-dynamic baseline consistency at a level of 1-3 mm for the pendulum Swarm-A/C formation and 3-5 mm for the high-dynamic Swarm-B/A and -B/C satellite pairs in different directions.