A distributed, rolling-horizon demand side management algorithm under wind power uncertainty
Paolo Scarabaggio (University of Bari)
S. Grammatico (TU Delft - Team Bart De Schutter, TU Delft - Team Sergio Grammatico)
Raffaele Carli (University of Bari)
M. Dotoli (University of Bari)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, we consider a smart grid where users behave selfishly, aiming at minimizing cost in the presence of uncertain wind power availability. We adopt a demand side management (DSM) model, where active users (so-called prosumers) have both private generation and local storage availability. These prosumers participate to the DSM strategy by updating their energy schedule, seeking to minimize their local cost, given their local preferences and the global grid constraints. The energy price is defined as a function of the aggregate load and the wind power availability. We model the resulting problem as a non-cooperative Nash game and propose a semi-decentralized algorithm to compute an equilibrium. To cope with the uncertainty in the wind power, we adopt a rolling-horizon approach, and in addition we use a stochastic optimization technique. We generate several wind power production scenarios from a defined probability density function (PDF), determining an approximate stochastic cost function. Simulations results on a real dataset show that the proposed approach generates lower individual costs compared to a standard expected value approach.