Influence of passivating interlayers on the carrier selectivity of MoOx contacts for c-Si solar cells
Mike Tang Soo Kiong Ah Sen (TU Delft - Photovoltaic Materials and Devices, TNO)
Gaby Janssen (TNO)
Agnes Mewe (TNO)
Paula Bronsveld (TNO)
Jimmy Melskens (AIKO Energy Netherlands B.V., TNO)
Fatemeh Hashemi (TNO)
P. Procel Moya (TU Delft - Photovoltaic Materials and Devices)
Arthur Weeber (TU Delft - Photovoltaic Materials and Devices, TNO)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The application of molybdenum oxide (MoOx) as a hole-selective contact for silicon-based solar cells has been explored due to superior optical transmittance and potentially leaner manufacturing compared to fully amorphous silicon-based heterojunction (SHJ) devices. However, the development of MoOx contacts has been hampered by their poor thermal stability, resulting in a carrier selectivity loss and an S-shaped IV curve. The aim of this study is to understand the influence of different passivating interlayers on the carrier selectivity of hole-selective MoOx contacts for crystalline silicon (c-Si) solar cells. We highlight the effect of different interlayers on the surface passivation quality, contact selectivity, and the thermal stability of our MoOx-contacted devices. The interlayers studied are intrinsic hydrogenated amorphous silicon (a-Si:H(i)), thermally grown ultrathin SiO2, and a stack consisting of an ultrathin SiOy and Al2O3 layer. Additionally, we simulate the interacting interlayer properties on the carrier selectivity of our MoOx contacts using a simplified model. Among these interlayers, the Al2O3/SiOy stack shows to be a promising alternative to SiO2 by enabling efficient transport of holes while being able to sustain an annealing temperature of at least 250 °C underlining its potential in module manufacturing and outdoor operation.