A high-level analysis of complex Arctic mixed-phase cloud dynamics
J.A. Antoon van Hooft (TU Delft - Atmospheric Remote Sensing)
Annica Ekman (Stockholm University)
Maura Dewey (Stockholm University)
Franziska Glassmeier (TU Delft - Atmospheric Remote Sensing)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Mixed-phase clouds play an important role in the Arctic climate system. However, accurate climate projections are seriously hampered due to uncertainties in representing these clouds. Understanding their dynamical behavior based on first principles is a challenging task which requires the disentanglement of mixed-phase micro-physical complexities and a multitude multitude of cloud--surface--boundary layer interactions. Here we take an alternative route towards describing the cloud system and adopt a dynamical-systems perspective. Such an approach has already been successfully applied to describe and model a wide range of complex systems. This research focuses on data obtained at the permanent observatory in Ny-Alesund, Svalbard. We present our results concerning the analysis of distinct signatures of two preferred states. Further, preliminary results on the interdependence of the key variables and their temporal evolution are presented.