Convergence of Expectation-Maximization Algorithm with Mixed-Integer Optimization

Journal Article (2024)
Author(s)

G. Joseph (TU Delft - Signal Processing Systems)

Research Group
Signal Processing Systems
DOI related publication
https://doi.org/10.1109/LSP.2024.3393352
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Signal Processing Systems
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Volume number
31
Pages (from-to)
1229-1233
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function with respect to all the unknown parameters (optimization variables). The requirement is not met when parameters comprise both discrete and continuous variables, making the convergence analysis nontrivial. This paper introduces a set of conditions that ensure the convergence of a specific class of EM algorithms that estimate a mixture of discrete and continuous parameters. Our results offer a new analysis technique for iterative algorithms that solve mixed-integer non-linear optimization problems. As a concrete example, we prove the convergence of an existing EM-based sparse Bayesian learning algorithm that estimates the state of a linear dynamical system with jointly sparse inputs and bursty missing observations. Our results establish that the algorithm converges to the set of stationary points of the maximum likelihood cost with respect to the continuous optimization variables.

Files

Convergence_of_Expectation-Max... (pdf)
(pdf | 0.324 Mb)
- Embargo expired in 28-10-2024
License info not available